首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4180篇
  免费   684篇
  国内免费   719篇
化学   1831篇
晶体学   31篇
力学   870篇
综合类   59篇
数学   354篇
物理学   2438篇
  2024年   4篇
  2023年   46篇
  2022年   88篇
  2021年   114篇
  2020年   104篇
  2019年   103篇
  2018年   140篇
  2017年   155篇
  2016年   190篇
  2015年   174篇
  2014年   252篇
  2013年   383篇
  2012年   248篇
  2011年   289篇
  2010年   239篇
  2009年   269篇
  2008年   273篇
  2007年   286篇
  2006年   277篇
  2005年   249篇
  2004年   235篇
  2003年   185篇
  2002年   180篇
  2001年   148篇
  2000年   128篇
  1999年   126篇
  1998年   110篇
  1997年   94篇
  1996年   70篇
  1995年   79篇
  1994年   77篇
  1993年   41篇
  1992年   35篇
  1991年   38篇
  1990年   17篇
  1989年   26篇
  1988年   20篇
  1987年   14篇
  1986年   7篇
  1985年   11篇
  1984年   9篇
  1982年   18篇
  1981年   7篇
  1980年   2篇
  1979年   7篇
  1978年   7篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1959年   1篇
排序方式: 共有5583条查询结果,搜索用时 171 毫秒
91.
92.
Nanometric gallium-nitride rods were grown on a silicon (1 1 1) substrate through a chemical vapor deposition process with gold particles as the catalyst. Randomly distributed gallium-nitride rods of 20–200 nm in diameter and of various densities and lengths were formed under different deposition conditions. Characterization analyses, such as scanning electron microscopy and optical reflection spectroscopy, have been carried out on samples containing gallium-nitride rods different in size, shape, length and density. While the scanning electron microscopy shows directly the images of the sample surfaces, the optical spectroscopy provides a nondestructive evaluation of the sample surfaces, especially helpful for checking the uniformity of the samples.  相似文献   
93.
In this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
94.
The fluidization behavior of Geldart A particles in a gas–solid micro-fluidized bed was investigated by Eulerian–Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation showed that the predicted minimum bubbling velocities were significantly lower than the experimental data even when an extremely fine grid size (of approximately one particle diameter) was used. The modified Gibilaro drag model was therefore tested next. The predicted minimum bubbling velocity and bed voidage were in reasonable agreement with the experimental data available in literature. The experimentally observed regime transition phenomena from bubbling to slugging were also reproduced successfully in the simulations. Parametric studies indicated that the solid-wall boundary conditions had a significant impact on the predicted gas and solid flow behavior.  相似文献   
95.
We present two types of relativistic Lagrangians for the Lorentz–Dirac equation written in terms of an arbitrary world-line parameter. One of the Lagrangians contains an exponential damping function of the proper time and explicitly depends on the world-line parameter. Another Lagrangian includes additional cross-terms consisting of auxiliary dynamical variables and does not depend explicitly on the world-line parameter. We demonstrate that both the Lagrangians actually yield the Lorentz–Dirac equation with a source-like term.  相似文献   
96.
To prepare cross‐linked silicone (silicone rubber) particles in an aqueous medium, we investigated two synthesis methods involving a miniemulsion system. The first method was based on cationic ring‐opening polymerization of cyclic siloxane, which is a common synthetic route for linear silicone oil and uses octamethylcyclotetrasiloxane (D4) as the monomer and dimeric D4 (bis‐D4) as the cross‐linker. Although this method produces silicone particles, the particles do not remain in the particulate state after drying because of low cross‐linking density. The polymerization mechanism of this method was also investigated, which proceeds under the ring‐opening reaction of D4 in monomer droplets and upon polycondensation of hydrolyzed D4, which occurs in the water phase (ie, outside the monomer droplets). This mechanism implied that introducing the cross‐linking structure into particles is difficult because of the low solubility of bis‐D4 in water. To overcome these difficulties, we demonstrated a second method of preparing silicone particles based on the thiol‐Michael addition reaction between thiol‐terminated silicone oil and triacrylate in miniemulsion systems. Transmission electron microscopy images indicated that the silicone particles obtained in the particulate state upon drying and the aggregates of these particles showed elasticity.  相似文献   
97.
Let T be the first return time to (?,0] of sums of increments given by a functional of a stationary Markov chain. We determine the asymptotic behavior of the survival probability, P(Tt)Ct?12 for an explicit constant C. Our analysis is based on a connection between the survival probability and the running maximum of the time-reversed process, and relies on a functional central limit theorem for Markov chains. As applications, we recover known clustering results for the 3-color cyclic cellular automaton and the Greenberg–Hastings model, and we prove a new clustering result for the 3-color firefly cellular automaton.  相似文献   
98.
The smoothed particle hydrodynamics (SPH) method is one of the powerful Lagrangian tools for modeling free surface flows. However, it suffers from particle disorder, which leads to interpolation and numerical errors. To overcome this problem, several techniques have been introduced until now, among which the particle shifting technique (PST) based on Fick's law is an efficient one. The current form of this method needs tuning parameters to fulfill numerical stability criteria. In this study, to eliminate calibration factors, a new shifting coefficient is derived theoretically based on particle positions before and after shifting, regardless of other parameters such as velocity, pressure, time step intervals, etc. The only required input is particle positions, and the main concern is conserving particle densities in their updated positions. In addition to the proposed PST, a new distribution index (DI) is introduced for measuring the spatial uniformity of particles. Furthering the research, some novel treatments are also studied to improve particle movements near free surface boundary. The proposed idea is only assessed for ISPH method in this study, and its performance in other SPH schemes needs more investigations. Following this innovative method, it is validated by modeling different cases including dam break flow, paddle movement, and elliptical water drop. In all cases, particle arrangements have been improved by means of the modified shifting method. In that sense, good agreements between simulation results with experimental data, analytical solutions, and other numerical methods approve the ability of the developed method in simulating free surface flows.  相似文献   
99.
In this work, the motion of a two-dimensional rectangular freely floating body under waves is simulated using Improved Meshless Local Petrov-Galerkin method with Rankine Source function (IMLPG_R) with variable spacing resolutions. The IMLPG_R method is a particle method that solves Navier–Stokes equations using the fractional step method to capture the wave properties. However, many existing particle methods are computationally intensive to model the wave-floating body due to the requirement of fine particles, needing uniform distribution throughout the domain. To improve the computational efficiency and capture the body response properly, variable spaced particle distribution with fine resolution near the floating body and coarse resolution far from the body is implemented. Numerical schemes to handle variable resolutions are reported. An iterative scheme to handle the wave-floating body is implemented in the particle method. Two test cases, one with small wave and another with steep waves, are simulated for uniform particle distribution and the result shows good agreement with literature. Based on this, the performance of the variable spaced particle distribution is tested in coupling with floating body solver. The application of the method for wave impact load from the green water loading of the floating structure is also simulated.  相似文献   
100.
有限质点法是以向量式力学为基础,用有限数量的质点来模拟结构的变形行为,质点的运动由牛顿运动定律来计算。在有限质点法中,质点通过构件相连,构件约束着质点的运动,并且其内力由质点的运动变量来描述。基于向量式力学的基本思想和非线性梁理论,提出了一种新的有限质点法,该方法在共旋单元坐标系中描述梁的非线性变形。以空间梁系结构为例,推导了计算构件内力的非线性公式,并考虑了弯扭耦合变形。通过两个连续欧拉角的变换公式得到共旋坐标系的旋转矩阵。与传统的有限质点法相比,本文提出的方法避免了刚体虚转动分析。通过四个结构的数值求解,验证了本文方法在计算结构大变形响应时具有较高的精度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号